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SUMMARY 

Recently it has been suggested that fast finite Fourier transforms be employed 
for the solution of TUNG’S integral equation. The COOLEY AND Tuxav algorithm used 
in the present work is much faster than the usual Fourier method since the length 
of computation is proportional to N log,(N) rather than Ns. This saves computer 
time and also enables a larger number of points to be used in order to facilitate com- 
puter plotting of the corrected chromatogram. First some of the basic properties of 
finite Fourier transform are presented in order to familiarize the reader with the 
approximations involved. Then several chromatograms, both analytical and simulated 
experimental are considered and some of the problems inherent in processing experi- 
mental chromatograms are discussed. 

INTRODUCTION 

Gel permeation chromatography (GPC)l is becoming popular for the charac- 
terization of molecular weight distributions of polymers. However, as a result of 
axial diffusion spreading occurs in the GPC instrument so that the molecular weight 
averages obtained from the chromatograms can be significantly different from the 
absolute molecular weight averages 2, As a result some interest has been generated in 
developing methods by which the experimental chromatograms can be corrected for 
this effects-0. Central to thisendeavour is the solution of the integral equation: 

z(t) = J=&T)Y(S) dt (1) 
-43 

which was first suggested by TUNG~. This equation relates z, the observed chromato- 
gram to the true chromatogram y which is being spread by the function x. t and z 
represent elution volumes. When x is a function of t-z only, eqn. I can be solved using 
Fourier transforrnsO~lO. The use of this type of solution in conjunction with numerical 
integration is not only slow but also seems to work better on analytical examples 
than on experimental data 29 11. For this reason we have undertaken to investigate 
the use of fast finite Fourier transforms (FFFT)l,2 as recently suggested by VLADIMX- 
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~0~~12. With this technique the length of computation becomes proportional to 
N log,(N) rather than N*. Even for a 32 point transform, this reduces the required 
computer time by a factor of 6. If large numbers of chromatograms must be processed 
the savings in money can be substantial. For the purposes of plotting, 32 points is 
really not enough as can be seen in Fig. I. To obtain better plots, a larger number of 
points must be used resulting in greater savings when FFFT is employed. It was also 
suspected that this method might be used to investigate the.nature of some numerical 
difficulties encountered by investigators attempting to process experimental chro- 
matograms. 

THEORY 

Although a detailed theoretical analysis of the computational simplifications 
involved in the FFFT will not be presented here, some of the basic properties of the 
finite Fourier transforms (FFT) will be discussed in order to introduce the notation 
and to give the reader a feeling for the method. A more detailed discussion can be 
found elsewher elQ. 

If ,X(j), ‘j = 0, I, . . . , iV - I is a sequence of N complex numbers, the finite 
Fourier transform of X(j) is defined as: 

A (n) =. I~N 71 X(j)e--2nt*3/N 
I 

where i = (-I)% If ?VN = exp(zni/N) then: 

A(n) = - I jN Nz’ X(j) wNBuje 
3 -0 

We also have the inverse finite transform: 

N-l 

X(i) = 2 A (n) wN”3. 
n -0 

This is a consequence of the orthogonality relationship of WhruJ: 

N-l N-1 
c wNujWN-rrr3 = Jy WNfn-mkf =‘Nif’w = m Mode N 

j-0 ! -0 = o otherwise 

A double arrow connecting two functions i.e. X(j) *--) A (~2) is used to indicate a finite 
Fourier pair. The exponential function WN is periodic in both n and j: 

WNd = WN(l~+Nki -_ WN*(j+N), 

Therefore, A (12) and X(j), as defined by their finite transforms, are periodiclin N. Also 
the convolution theorem holds : 

I JN 2: Xl(Iz)Xz( j - is) = I/N RNZ: Xl(j’- Iz)Xz(lz) c-) 44r(Wz(M., 
I 
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In this paper we are particularly interested in using the finite Fourier transform 
to approximate the Fourier integral: 

s 00 

4f) = x(t)o-wtJc dt. 
-00 

If a(f) is sampled at intervals of length df and expressed at sampling points ndf, 
9t =o, &I, &z,...then: 

s 00 

u(nAf) = x(2)e-fnllT clt, 
-43 

where T = r/Af. Exp( - 272 i&/T) is a periodic function of t with period T. By 
changingVthe variables of integration it is possible to obtain: . 

where 
k-Cou 

xp(t) = c x(t + kT). 
km-w 

The subscript p on a function will denote the periodic function formed by super- 
position of the non-periodic function shifted by all multiples of the fundamental 
period. This is the approximation introduced when the infinite transform is replaced 
by the finite transform. If x(t) is zero ,outside certain limits so that x,,(t) k: x(t) this 
is a good approximation and the finite transform can be used to replace the infinite 
transform. 

For the convolution integral of eqn. I, the convolution theorem of Fourier 
theory states that if: 

then c(f) = 4f)W). If Y(Z) in eqn. I equals zero for 1 z 1 > TV then: 

et> - s TY 
x(t - t)y(t)clt. 

-T11 

Approximating this integral by the trapezoidal rule gives : 

where At = TIN, I< = Ty/At and j = o, I, 2, . . . , N - I. By the theorem on the 
convolution of FFT this will be approximated by AtlVA (m)B(n). There is a wrap-around 
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error in this procedure. This is because values of X in the range X( - I<) to X(iV + I<) 
must be used and the convolution is computed as though X(i) repeated itself outside 
the (0, N - I) interval. To avoid this type of difficulty it is necessary to include at 
least K zeroes on either side of x and y; 

In other words the FFT cau be introduced in two ways. One is through the 
observation that if +(t) k: x(t), then the FFT is a good approximation to the Fourier 
integral; The other is to approximate the integral in eqn. I using the trapezoidal rule 
and then employing the convolution property of FFT to obtain the desired result. 
Both these methods are related since they depend on the functions involved being 
small outside a certain region. 1. 

ANALYTICALRESULTS 

As we have seen, there are two justifications for employing FFFT. Actual appli- 
cation requires a judicious choice of F, T and N. In this respect it is important to take 
into account the relationships between these quantities: 

NAt = T I/T = Af 

NAf = F I/F = At. 

Usually T is determined by the experimental chromatogram, allowing a certain num- 
ber of zeroes on both sides to keep from introducing wrap-around errors. N is 
then, determined by having F w I. Extending the calculation further into the fre- 
quency domain has no practical value since rounding errors will predominate. Once 
the transform of y is obtained using the formula B(B) = C(rt)/A@), zeroes can be 
added at the end of B in order to increase N to N’, &and hence T is kept constant. 
The resulting inverse FFFT using N’ points produces Y(j) with a much smaller 
At = T/N’. This enables the computer to plot Y(i). Otherwise a. smooth curve must 
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Fig. I. A plot Of~vNG’S analyticaltest fUnCtiOny(l)USingOUly 32points.(X X x),?(l); ( -_) 34). 
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be’fitted through the processed points to avoid the type of plot illustrated in Fig. I. 

To explore the method analytically, the synthetic, two-peak distribution: 

y(t) I (0.325/2/n) [0.6e'(O.323)~(,-2,)~ + ~,+-(o.3WaW-3dj 

suggested by TUNGB was utilized. A simple Gaussian of the form x(z) = &$-1’2 
exp( - lz%2) was used as the spreading function. This example is advantageous since 
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I?@. 2. A comparison of the exact y(t) with y&t) computed 
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Fig. 3. A comparison of the exact y(t) with y&t) computed by FITT with IS = 0.2. (f + +) z(t) ; 
( . . . . . . 1 YW ; ( -) YF14 * 
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all the integrals of interest can be computed exactly and used for the purposes of 
comparison. Figs. z and 3 illustrate the plottedy(z) obtained with 12 = 0.4 and h = 0.2, 
respectively, using a value of N’ = 1024. For the case of h = 0.2 the results are worse 
since F had to be reduced to 112 and only 32 points were used from a(t). However 
when the results are plotted, in Fig. 3 they can not be distinguished from the true 
values. 

Once it had been established that the method and the relevant computer 
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Fig. 4. .A comparison of the exact y(t) with I+ computed by neglecting values of z(t) < 0.00~ 
(.~(t))~~ with k = 0.4. (-I- + +> z(t) : (0 l ’ . l #) y(t) ; ( -_) Yd* 
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Fig. 5. A comparison of the exact y(t) with y&t) computed by neglecting values of z(t) c 0.005 
(~(l))~~~ with Iz = o.4* (+-t--k) z(t); (******>y(t); ( 1 YF(O* 
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programs worked well on this example, an attempt was made to process more realistic 
chromatograms. In particular it was desired to establish practical limits on F and to 
investigate the oscillations in y encountered by other workers291’. 

The limit on the acquisition of data is the signal to noise ratio (S/N). In a 
typical GPC experiment one can not expect a value much in excess of IOOO to I. 

With the FFFT method, 3he transform is computed to a certain number of decimal 
places. The exact number of places depends on the accuracy of the input data and 
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Fig. 6. A comparison of the exact y(t) with yp(l) computed 
with 12 =0.4. (+++) a(l); (**e*S*) y(t); ( -) YM. 
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Pig. 7. A comparison of the exact y(t) with yp(l) computed 
with it =0.4. (++-I-) z(t); (**.s*.) y(t); ( -) YP(O’ 

by rounding all values of z(l) to 0.005 
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on the number of significant figures retained by the computer. In the case of GPC, the 
signal to noise ratio of the input data becomes the limiting factor so that the transform 
can not be calculated more accurately than one part in a thousand. Unfortunately 
this’means that the smallest numbers in the transform never get much smaller (in 
absolute value) than 1'0 -3 times the largest number. Thus C(n) does not .appear to 
approach zero~asymptotically as it should. On the other hand the Gaussian is analytic 
and its tmnsform can be calculated quite accurately. Since the transform of a Gaussian 
is itself a Gaussian it approaches zero rapidly. To obtain the transform of Y we divide 
by the transform of X. The division by small numbers produces large meaningless 
numbers which completely dominate the Fourier synthesis of Y. This can be easily 
illustrated by setting all the values of Z sxnaller than 0.1 o/o of the largest Z equal 
to zero. 

To compensate this type of error, it was decided to set all elements of the 
transform of 2 smaller than 0.1 y. of the largest equal to zero since elements of this 
order of magnitude could not be computed accurately. This calculation for h = 0.4 
is plotted in Fig. 4 and compared with the exact result. If the cut-off point is set at 
0.5 %, the somewhat inferior fit of Fig. 5 is obtained. 

Not only are the wings of real chromatograms affected by the noise but all the 
data are limited in accuracy. To simulate this all the values of 2 were rounded to 
0.1%. The results were plotted in Fig. 6. With this S/N ratio no oscillations are seen 
to appear. When 2 was rounded to 0.5 %, the plot of Fig. 7 was obtained. The results 
are similar to those of Fig. 5 and probably represent the limiting value of S/N which 
can be handled successfully by this method. 

CONCLUSIONS 

When the spreading function is not strongly dependent on elution volume the 
FFFT is an efficient method of solving TUNG'S equation. It also becomes possible to 
employ enough points for the computer to plot the end product. It seems practical 
to allow the spreading function to determine F as has already been suggestedz, 
although this is not critical in the FFFT method. Providing a cut-off for the transform 
of Zwhich goes inversely as S/N seems to be reasonable on the basis of the few examples 
examined in this paper. However, this could probably be optimized further in indi- 
vidual cases. The possibility of processing chromatograms with a S/N greater than 
ZOO/I without producing an unsatisfactory loss of accuracy is suggested. It should 

also be noted that since the FFFT method uses log,(N) operations to compute a 
point rather than N operations, errors in the input data do not accumulate as rapidly14 
as in the usual method. 
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